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Abstract. The nonlinear extensions of the single-mode squeezed vacuum and squeezed coherent states are
studied. We have constructed the nonlinear squeezed states (NLSS’s) realization of SU(1,1) Lie algebra.
Two cases of this realization are considered for unitary and non-unitary deformation operator function. The
nonlinear squeezed coherent states (NLSCS’s) are defined and special cases of these states are obtained.
Some nonclassical properties of these states are discussed. The s-parameterized characteristic function and
various moments are calculated. The Glauber second-order coherence function is calculated. The squeezing
properties of the NLSCS’s are studied. Analytical and numerical results for the quadrature component
distributions for the NLSCS’s are presented. A generation scheme for NLSCS’s using the trapped ions
centre-of-mass motion approach is proposed.

PACS. 42.50.-p Quantum optics – 42.50.Dv Nonclassical states of the electromagnetic field, including
entangled photon states; quantum state engineering and measurements

1 Introduction

Coherent states (CS’s) of a simple harmonic oscillator
have considerable applications in the field of quantum
optics. It satisfies the eigenvalue equation a|α〉 = α|α〉,
with α = |α| exp(iθ) and a is the annihilation operator
for bosons. However, the coherent state |α〉 parameterized
by α can be cast as the result of the action of the dis-
placement operator D(α) on the ground state |0〉, with
D(α) = exp(αa+ − α∗a) [1], with a+ the creation opera-
tor for bosons being the Hermitian conjugate of a, and α∗
the complex conjugate of α. In addition to CS’s, squeezed
states (SS’s) are becoming increasingly important, these
are the non-classical states of the electromagnetic field in
which certain observables exhibit fluctuations less than in
the vacuum state [2]. These states are very useful in vari-
ous branches of physics.

On the other hand, considerable attention has been
paid to the deformation of the harmonic oscillator algebra
of creation and annihilation operators [3]. Some impor-
tant physical concepts such as the CS’s, the even- and
odd-coherent states for ordinary harmonic oscillator have
been extended to deformation case. The nonlinear coher-
ent states (NLCS’s) |α〉f , are right-hand eigenstates of the
product of the boson annihilation operator a and nonlin-
ear function f(a+a) of the number operator N = a+a, i.e.,
they satisfy af(N)|α〉f = α|α〉f . The nature of the non-
linearity depends on the choice of the function f . These
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states may appear as stationary states of the center-of-
mass motion of a trapped and bichromatically laser-driven
ion far from the Lamb-Dicke regime [4]. These states as
well as their superpositions have been introduced and
studied [5]. These NLCS’s exhibit nonclassical features
like squeezing and self-splitting [5]. The construction of
nonlinear squeezed states (NLSS’s) have been given in ref-
erence [6].

The SU(1,1) Lie algebra is of great interest in quantum
optics because it can characterize many kinds of quan-
tum optical systems [7–14]. It has recently been used by
many researchers to investigate the nonclassical properties
of light in quantum optical systems [12–14]. In particular,
the bosonic realization of SU(1,1) describes the degener-
ate and non-degenerate parametric amplifiers [7,12]. The
squeezed states of photons have been considered in terms
of SU(1,1) Lie algebra and the coherent states associated
with this algebra. The squeezed vacuum state is a special
case of the Perelomov SU(1,1) coherent state [7–13].

Nonclassical effects are characterized by photon anti-
bunching, sub-Poissonian photon statistics and quadra-
ture squeezing [15]. The definition of nonclassicality is
based on the existence of a well- behaved P-function [1].
This means that a state is considered to have a classi-
cal counter part if the P -function has the properties of a
probability measure. For a nonclassical state it fails to be
interpreted as a probability and it may have singularities
(Titulaer and Glauber in [1]). Some methods for the char-
acterizations of the nonclassical properties of radiation
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related to the P-function have also been discussed [16–
18]. Also, the negativity of the Wigner function may be
used as a signature of nonclassicality [19].

A nonclassical state has been generated experimen-
tally by applying a series of laser pulses on a laser-cooled
trapped ion in its motional ground state [20]. Hence the
ion trap is a realization of the harmonic oscillator model
in quantum mechanics. In this manner, nonclassical states
of the atomic motion and entangled states of internal and
external degrees of freedom of the atom could be real-
ized [21–23]. The engineering of the vibronic coupling of
trapped atom by appropriate laser excitations have been
proposed [21]. The realization of special classes of NLCS,
corresponding to special choices of the function f(n) have
been investigated [20–23]. Here we propose an experimen-
tal scheme to engineer the NLSCS’s.

It is well known that there are three definitions of SS’s
and CS’s [1,2,13]: (1) displacement operator acting on
vacuum states, (2) eigenstates of the linear combination
of creation and annihilation operators, and (3) minimum
uncertainty states. Therefore, the SS’s are defined to be
the eigenstates of the operator b with eigenvalues α, [2]

b|α, µ, ν〉 = α|α, µ, ν〉 (1)

where µ and ν are complex numbers satisfying |µ|2−|ν|2 =
1 and b = µa + νa+ and its adjoint b+, thus it follows
a = µ∗b − νb+. For ν = 0, then |α, µ, ν〉 becomes the
ordinary coherent state. Also, the squeezed state can be
defined by the action of a squeeze unitary operator [2] on
the coherent state namely |z, α〉 = S(z)|α〉, with

S(z) = exp
[
1
2
(z∗a2 − za+2)

]
(2)

where z = r exp(iφ) is a complex number. We easily obtain

S(z)|α〉 = S(z)D(α)|0〉 = D(α0)S(z)|0〉 (3)

where the parameters α0 and α0
∗ represent equivalent

shift of a squeezed vacuum as α = µα0 + να0
∗. And

z, z∗ are related to µ and ν by µ = cosh r, and ν =
exp(iφ) sinh r.

The aim of this work is to construct the NLSS’s as
realizations of SU(1,1) Lie algebra, define the nonlinear
squeezed coherent states (NLSCS’s) and study some of
their statistical properties. One problem has been that:
it is relatively easy to define states of the field with non-
classical properties but it is another matter altogether to
find suitable mechanisms for their generation. Therefore,
we use vibrational motion of trapped ions to realize the
NLSCS’s. This paper is organized as follows. In Section 2
we briefly discuss the construction of the NLSS’s realiza-
tion of SU(1,1) Lie algebra. In Section 3 we introduce the
definition of NLSCS’s and special cases are found. In Sec-
tion 4 we discuss the statistical properties of NLSCS’s such
as, s-parameterized characteristic function (CF), moments
and squeezing. Also, we discuss the quadrature compo-
nent distributions for these states. A generation scheme
for NLSCS’s using the trapped ions centre-of-mass mo-
tion approach is introduced in Section 5.

2 NLSS’s realization of SU(1,1) Lie algebra

The dynamical group SU(1,1) has long been used in quan-
tum optics as it is intimately related to the squeeze op-
erator which is an element of the SU(1,1) group [7].
This group is the simplest non-Abelian noncompact Lie
group with a simple Lie algebra, and shares with SU(2)
a common complex extension. The CS’s of the SU(1,1)
group can be divided into two broad categories: (a) the
Barut-Girardello (BGCS’s) [9] and (b) the Perelomov
(PCS’s) [10]. These two papers are the basic investigations
in which the concept of CS’s was extended beyond the
Heisenberg-Weyl group for the first time. Perelomov [10]
has elaborated and generalized the idea of CS’s to other
Lie groups, his book group methods were employed to
study the properties of these systems. The (BGCS’s) have
been investigated in mathematical framework in [11]. The
duality of these two types of SU(1,1) CS’s and an inter-
mediate type have been considered in reference [8].

The physical quantities observed experimentally in
many optical effects based on emission and absorption
photons can be associated with the creation (a+) and an-
nihilation (a) operators. Optical effects connected with the
two-photon physics, are often related to the SU(1,1) Lie
group [7–14]. it has been shown that the single- and two-
mode bosonic realizations of the SU(1,1) Lie algebra have
immediate relevance to the nonclassical squeezing proper-
ties of light [7–14]. The SU(1,1) Lie algebra is spanned by
the three generators K1, K2, K3,

[K1, K2] = −iK3, [K2, K3] = iK1, [K3, K1] = iK2.
(4)

It is convenient to use the raising and lowering generators
K± = K1 ± iK2, which satisfy

[K3, K±] = ±K±, [K−, K+] = 2K3. (5)

For any irreducible representation of SU(1,1) the Casimir
operator K2 = K2

3−K2
1−K2

2 has the form K2 = k(k−1)I.
Thus a representation of SU(1,1) is determined by the
parameter k.

2.1 The standard states

First we briefly review the standard case. The squeezed
vacuum realization of the SU(1,1) Lie group is considered
by taking the Ks operators in the form

K+ =
1
2
a+2

, K− =
1
2
a2, K3 =

1
2

(
N +

1
2

)
(6)

with N = a+a the photon number operator. The Casimir
operator in this case becomes K2 = −3/16. Therefore,
there are two irreducible representations with k = 1/4 and
k = 3/4 [7,13]. The state space associated with k = 1/4 is
the even Fock sub-space with the orthonormal basis con-
sisting of the even number eigenstates {|2n〉}. While the
state space associated with k = 3/4 is the odd Fock sub-
space with the orthonormal basis {|2n + 1〉}. The squeeze
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operator

S(z) = exp (zK+ − z∗K−) = exp
(

1
2
za+2 − 1

2
z∗a2

)

(7)
is the unitary group operator for the two-photon realiza-
tion where K+, K−, K3, are given by (6). In this case,
the SU(1,1) coherent states are the single-mode squeezed
states. For k = 1/4, the squeezed vacuum is given by

|ξ, 1/4〉 = S(z)|0〉 = (1 − |ξ|2)1/4
∞∑

n=0

√
(2n)!

2nn!
ξn|2n〉 (8a)

and for k = 3/4, the squeezed one-photon state is given by

|ξ, 3/4〉 = S(z)|1〉 = (1−|ξ|2)3/4
∞∑

n=0

√
(2n + 1)!
2nn!

ξn|2n+1〉
(8b)

with ξ = (z/|z|) tanh |z| = eiφ tanh r.

2.2 The nonlinear realization

In what follows we mention the NLSS’s realization of the
SU(1,1) group by constructing the K− operators in the
following way [14],

K+ =
1
2
(f(N)+a+)2 =

1
2
A+2

, K− =
1
2
(af(N))2 =

1
2
A2,

(9a)
where the operator valued function f(N) is a reasonably
behaved function of the photon number operator N . For
the operator K3 to be in the form of (6) then f must be
a unitary operator f+ = f−1. Under this condition

K3 =
1
2

(
N +

1
2

)
. (9b)

The unitary group operator Sf (z) for the nonlinear
squeezing is the operator given by (7) but with K±, K3

given by (9) under the condition f+ = f−1. Therefore the
SU(1,1) coherent states are the NLSS’s. Consequently the
non-linear squeezed vacuum is given by

|ξ, 1/4〉f = (1 − |ξ|2)1/4
∞∑

n=0

√
(2n)!(f(2n)!)−1

2nn!
ξn|2n〉

(10a)
while the nonlinear squeezed one-photon state is given by

|ξ, 3/4〉f = (1 − |ξ|2)3/4
∞∑

n=0

√
(2n + 1)!

2nn!(f(2n + 1)!)
ξn|2n + 1〉

(10b)
where f(0) = 1, f(n)! =

∏n
i=0 f(i). The states (10) are

the SU(1,1) group realization by a nonlinear squeezed vac-
uum and one-photon states.

2.3 Realization for non-unitary f

Even if the operator function f(N) is not a unitary op-
erator one can still define a NLSS’s as given in [14]. The
steps towards this depends on using a canonical conjugate
operator. If we have

A = (af(N)), A+ = ([f(N)]+a+), (11a)

then the canonical conjugate operators are

B+ =
1

f(N)
a+, B = a

1
[f(N)]+

. (11b)

The operators A and B satisfy the commutation relations

[A, B+] = 1, [B, A+] = 1. (11c)

In what follows the operator valued function f is assumed
to be a well-behaved real function. The use of the opera-
tors A and B+ (instead of A+) does not insure the opera-
tor S being unitary, thus one looks for the eigenfunctions
of the operator

C1 =
1√

1 − |ξ1|2
(A − ξ1B

+)

or C2 =
1√

1 − |ξ2|2
(B − ξ2A

+) (12)

with the eigenvalue zero, i.e., the nonlinear squeezed vac-
uum states are the solutions of the equations

C1|Ψ1〉f = 0 or C2|Ψ2〉f = 0. (13)

It is straightforward to find the expression

|Ψ1〉f = N1

∞∑
m=0

√
(2m)!(f(2m)!)−1

2mm!
ξm
1 |2m〉 (14a)

and

|Ψ2〉f = N2

∞∑
m=0

√
(2m)!(f(2m)!)

2mm!
ξm
2 |2m〉 (14b)

where N1, N2 are the normalization constants. While the
nonlinear squeezed one-photon states are the solutions of
the eigenvalue equations

C2
i |Φi〉 = 0, i = 1, 2. (15)

Carrying out the calculations, it is easy to find that
these states are composed of the odd Fock states and are
given by

|Φ1〉f = Ń1

∞∑
m=0

√
(2m + 1)!(f(2m + 1)!)−1

2mm!
ξm
1 |2m + 1〉

(16a)
and

|Φ2〉f = Ń2

∞∑
m=0

√
(2m + 1)!(f(2m + 1)!)

2mm!
ξm
2 |2m + 1〉

(16b)
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with Ńi normalization constants. Equations (14) and (16)
are formally similar to equations (10) which are the
squeezed states and NLSS’s realizations of the SU(1,1)
group for the different Bargmann numbers.

The functions |Ψi〉 and |Φi〉 may be formulated as re-
sults of applications of exponential operators on the states
|0〉 and |1〉. In effect it is easy to find that

|Ψ1〉 = N1e
1
2 ξ1B+2 |0〉, |Φ1〉 = Ń1e

1
2 ξ1B+2 |1〉 (17)

while for |Ψ2〉 and |Φ2〉 B+ is replaced by A+. Some of the
nonclassical properties of these states have been discussed
recently [14].

3 Nonlinear squeezed coherent states

In this section we extend the investigation to the nonlinear
squeezed states. We first start with the case when the
operator valued function f is unitary.

3.1 The definition for unitary f

For the operator function f(N) is unitary operator, i.e.,
f+ = f−1, and [A, A+] = 1. Then the NLCS’s are defined
in the form [6]:

|α〉f = exp(αA+ − α∗A)|0〉 = Df (α)|0〉, (18)

with α a complex number. The nonlinear squeezed vacuum
states [6] are given by

|z〉f = exp
[
1
2
(zA+2 − z∗A2)

]
|0〉 = Sf (z)|0〉 (19)

and the nonlinear squeezed coherent states in this case is
defined by

|z, α〉f = Sf (z)Df (α)|0〉 (20)

which can be written as

|ξ, β〉f = c0

∞∑
m=0

1
f(m)!

√
m!

(
−1

2
ξ

)m/2

× Hm

[
β
√

1 − |ξ|2√−2ξ

]
|m〉. (21)

By using the Hermite relation [24],

∞∑
n=0

(t/2)n

n!
Hn(x)Hn(y) =

(1 − t2)−1/2 exp
(

2xyt − (x2 + y2)t2

1 − t2

)
(22a)

where Hn(x) stands for the Hermite polynomials, given by

Hn(x) =
[ n
2 ]∑

i=0

n!(−1)i(2x)n−2i

i!(n − 2i)!
. (22b)

Due to the fact that f is unitary, the normalization con-
stant c0 is the same as for the standard squeezed state
f = 1, in the form

|c0|−2 =
1√

1 − |ξ|2 exp
{
−|β|2 +

|ξ|
2

(β2eiφ + β∗2e−iφ)
}

.

(23)

When we use the relation ξ = −eiφ tanh r, or ξ = −ν/µ,
and write β = µα0 − να∗

0 = α in equation (3), the exact
formula of Yeun’s work [2] is retained. For the results of
NLCS’s we put ξ = 0 in equations (21) and (22). The
coherent states normalization constant can be found when
ξ = 0 in equation (23).

For the unitary deformation operator function, i.e.,
ff+ = I, it is clear that the overcompleteness relation
holds

1
π

∫
|ξ, β〉f f 〈β, ξ| d2β = 1. (24)

The overcompleteness relation is difficult to prove for the
non-unitary case as we mention below.

3.2 The definition for non-unitary f

In this case, we define the nonlinear squeezed coherent
states (NLSCS’s) |ξ, β〉f as the eigenfunctions of the op-
erators Ci of equation (12) such that

Ci|ξi, βi〉f = βi|ξi, βi〉f i = 1, 2 (25)

where βi are complex numbers, and Ci given in equa-
tion (12). We next determine the solution to the eigen-
value equation (25). The NLSCS’s are expressed in terms
of the Fock states in the form

|ξi, βi〉f =
∞∑

n=0

cn|n〉. (26)

Substituting equation (26) into equation (25), we find the
recursion relation among the coefficients cn’s

√
1 − |ξ|2βcm =

√
m + 1f(m+1)cm+1− ξ

√
m

f(m)
cm−1 (27)

taking cm = dm/[f(m)!
√

m!], then
√

1 − |ξ|2βdm = dm+1 − ξmdm−1. (28)

Putting dm = (− 1
2ξ)m/2Fm, and by the help of the

Hermite polynomial recurrence relation

2xHn(x) = 2nHn−1(x) + Hn+1(x) (29)

we obtain

|ξ1, β1〉f = F01

∞∑
m=0

1
f(m)!

√
m!

(
−1

2
ξ1

)m/2

Hm

×
[

β1

√
1 − |ξ1|2√−2ξ1

]
|m〉 (30)
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where the normalization factor has the form

|F01|−2 =

{ ∞∑
n=0

1
[f(n)!]2n!

(
−1

2
|ξ1|

)n

×
∣∣∣∣∣Hn

[
β1

√
1 − |ξ1|2√−2ξ1

]∣∣∣∣∣
2 }

. (31)

A similar expression is obtained for |ξ2, β2〉f but with
f(m)! replaced by [f(m)!]−1. This is the definition of the
NLSCS’s depending on the form of function f when it is
not a unitary operator. Note that it is formally similar to
equation (21).

4 Non-classical properties

In this section, we shall evaluate the characteristic func-
tion (CF) and examine the correlation function, squeezing,
and quadrature distributions. However before we proceed
any further it is necessary to specify the nonlinearity func-
tion f(n). From equation (30), it is clear that for every
choice of f(n) we shall get different NLSCS states. In the
present case, we choose the following nonlinearity function
which has been used in the description of the motion of a
trapped ion [4], namely

f(n) =
L1

n(η2)
(n + 1)L0

n(η2)
. (32)

Where η is known as the Lamb-Dicke parameter and
Lm

n (x) are associated Laguerre polynomials given by

Lσ
m(x) =

m∑
s=0

(
m + σ

m − s

)
(−x)s

s!
. (33)

Clearly f(n) = 1 when η = 0 in this case the states of (21)
and (30) become the standard squeezed coherent states.
However, when η �= 0 nonlinearity starts developing, with
the degree of nonlinearity depending on the magnitude
of the parameter η. The function f(n) can be tailored at
well by using N−lasers to engineer the Hamiltonian for
nonlinear multiquanta JCM as proposed in [21].

To begin with the state (30) will be written in the form

|ξ, β〉f =
∞∑

n=0

Bn(ξ, f, β)|n〉, (34a)

where

Bn(ξ, f, β) = F0

(− 1
2ξ)n/2

f(n)!
√

n!
Hn

[
β
√

1 − |ξ|2√−2ξ

]
. (34b)

For simplicity we use Bn(ξ, f, β) = Bn in our calculations.
It is clear that the coefficients Bn in general depend on
polynomials, therefore we shall resort to perform numeri-
cal calculations.

4.1 Moments and the auto-correlation function g(2)(0)

The average values of the annihilation and creation opera-
tors are derived by differentiating the characteristic func-
tion (CF) with respect to λ and −λ∗, respectively. The s-
parameterized characteristic function C(β, s) is defined by

C(λ, s) = Tr[ρD(λ)] exp
(s

2
|λ|2

)
(35)

with D(λ) as given before. Now we calculate the CF for
the state |ξ, β〉f equation (30). The density operator cor-
responding to the state |ξ, β〉f is

ρ = |ξ, β〉f f 〈β, ξ| (36)

then after some operators algebra, we can write the CF
on the form,

C(λ, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp{− 1
2 (1 − s)|λ|2}∑∞

m,n=0 B∗
nBm

×
√

m!
n! (λ)n−mLn−m

m (|λ|2), n > m

exp{− 1
2 (1 − s)|λ|2}∑∞

m,n=0 B∗
nBm

×
√

n!
m! (−λ∗)m−nLm−n

n (|λ|2), m > n

(37)
where Lσ

m(x) is the associated Laguerre polynomial. A
hierarchy of observable conditions for a quantum state
to be nonclassical have been derived in terms of exper-
imentally accessible characteristic functions of quadra-
tures [17]. Thus, the CF is obtained; and from it we can
calculate any expectation value for the field operators. The
s-ordered average value of a and a+ can be calculated in
the following way

〈[a+k
al]s〉 = Tr[ρ{a+k

al}s]

=
∂k

∂λk

∂l

∂(−λ∗)l
C(λ, s)|λ=λ∗=0. (38)

Or through an integration involving the s-parameterized
quasiprobability function [1]. To calculate the moments of
the quadratures in our state, one has to find average values
of products of the operators a and a+ in these states, on
the form

〈aq〉 =
∞∑

s,r=0

BrB
∗
s

√
r!

(r − q)!
δs,r−q = 〈a+q〉∗ (39)

〈a+p
aq〉 =

∞∑
s=p,r=q

BrB
∗
s

√
r!

(r − q)!

√
s!

(s − p)!
δs−p,r−q.

(40)

Practically applicable criteria for the nonclassicality of
quantum states are formulated in terms of different types
of the moments of creation and annihilation operators [17].
A method for measuring general space-time dependent
correlation functions of quantized radiation fields have
been proposed in reference [18]. It is shown that all the re-
quired moments can be determined by homodyne correla-
tion measurements [17]. We look at one way to character-
ize nonclassicality behaviour namely the auto-correlation
function.
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η 

Fig. 1. Coherence function g(2) measured on vertical axis
and horizontal axis indicates the nonlinearity parameter η.
The direction of squeezing is zero φ = 0, and (a) β = 3,
ξ = − tanh r = 0, i.e., r = 0, (solid curve) and β = 3,
ξ = − tanh 1, i.e., r = 1 (dashed curve); (b) β = 3, r = 2,
(solid curve) and β = 5, and r = 1 (dashed curve).

The Glauber second-order coherence function is de-
fined by

g(2) =
〈a+2

a2〉
〈a+a〉2 . (41)

The light with g(2) < 1 is a sub-Poissonian light, with
1 < g(2) < 2 is a super-Poissonian light, and with g(2) > 2
is called super thermal light. Coherent light has g(2) = 1
while thermal light has g(2) = 2.

We plot the auto-correlation function g(2) in Figure 1
against the squeeze parameter ξ. We assume the param-
eters as follows: the direction of squeezing is taken to be
zero, and (a) β = 3, and ξ = 0, r = 0, 1 (b) β = 3, 5, and
r = 1, 2.

From Figure 1a sub-Poissonian light exists for r = 0
and η > 0.1 and the super-thermal exists for small β with
r > 2 and super-Poissonian for η = 0.4. For increasing
r the super-thermal behaviour is persistent. Also, when
the displacement parameter β is increased the Poissonian
behaviour is persistent. From Figure 1b, we note that the
sub-Poissonian light exists for large range of η with higher

values of squeezing and coherence parameters. The super-
Poissonian light exists only with r > 0.75. The super-
thermal statistics exists as r increases.

Generally the contribution of the nonlinearity param-
eters appears when the values of squeezing and coherence
parameters are small. In this case we have examined the
behaviour of sub-Poissonian, which depends originally on
the squeezing and coherence parameters.

4.2 Photon number distribution

We begin by looking at the photon number distribution for
the state |ξ, β〉f . The photon number distribution P (l) is

P (l) = |〈l|ξ, β〉f |2

= |Bl|2. (42)

In Figure 2 we illustrate the photon number distribution
P (n) with β = 3, ξ = − tanh 1, i.e., r = 1 and for different
values of the nonlinearity parameter η. For η = 0 the
photon number distribution has a maximum around the
value of |β|2+sinh2 r. The photon number distribution has
less than that value for 0 < η < 0.25. Some oscillations
of P (l) appear for the values of η > 0. The oscillations
reoccur later for higher values of η > 0.2 for lower values
magnitude of photon number.

4.3 Squeezing

We next look at squeezing. To do this, we introduce the
two quadrature operators

X1 =
1
2
(a + a+), X2 =

1
2i

(a − a+). (43)

These are dimensionless position and momentum op-
erators for a harmonic oscillator. Their commutator is
[X1, X2] = i/2 and they satisfy the uncertainty relation
〈(∆X1)2〉〈(∆X2)2〉 ≥ 1/16 with the variance 〈(∆Xj)2〉 =
〈X2

j 〉−〈Xj〉2. The field is said to be squeezed if (∆Xj)2 <

1/4 for (j = 1 or 2).
The average values of the quadrature field operators

〈X1〉 and 〈X2〉 are directly computed. Also variances of
the quadrature field operators 〈(∆X1)2〉 and 〈(∆X2)2〉 are
computed.

The squeezing is best parameterized by the following
parameters

qj =
〈(∆Xj)2〉 − 0.25

0.25
, j = 1, 2 (44)

such that squeezing exits for −1 < qj < 0, i.e., the squeez-
ing condition now reads qj < 0, and the maximum squeez-
ing corresponds to qj = −1. Squeezing in one quadrature
is achieved at the expense of increase noise in the conju-
gate quadrature. Therefore, if one of qj ’s is less than zero,
then the other should be greater than zero.

In Figure 3 we plot q1 against η with β = 0.5, φ = 0,
and r = 0.25. Squeezing for increasing r is shown as may
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Fig. 2. The photon number distribution P (n) with β = 3,
φ = 0, and r = 1, for values of η = 0, 0.1, 0.2.

Fig. 3. Squeezing parameter q1 against the nonlinearity pa-
rameter η, with β = 0.5 and r = 0.25.

be expected. The quadrature operator q2 has no squeezing
for these states for the same parameters. The squeezing
behaviour decreases for increase of the coherence param-
eter β, and becomes highly effective for r > 0 and small
of β. After η = 0.4 the behaviour becomes remarkably
different and larger values of squeezing are observed [25].

Numerical calculations show that with increasing
Lamb-Dicke parameter η the nonclassical effects are typ-
ically decreasing for the range 0 < η < 0.45. But with
increasing η, i.e., η > 0.45, the behavior of the NLSCS’s
is reversed, i.e., the nonclassical effects are typically in-
creased. Therefore, increasing values of η (more than 0.45)
result in significant oscillations as shown in Figure 2.

4.4 Quadrature distributions

In order to calculate the quadrature component distribu-
tion for the NLSCS state (i.e., the phase-parameterized
field strength distribution) we write

P (x, Φ) = |〈x, Φ|ξ, β〉f |2 (45)

which can be measured in balanced homodyne detection.
We first expand the eigenstate |x, Φ〉 of quadrature com-
ponent

x(Φ) =
1√
2
(e−iΦa + eiΦa+) (46)

with eigenvalue x in the photon number basis as [26]

|x, Φ〉 =
1

π
1
4

exp(−1
2
x2)

∞∑
j=0

eiΦ j√
2jj!

Hj(x)|j〉. (47)

We have the quadrature component distribution (3.6) in
the form

P (x, Φ) =
1

π
1
2

exp(−x2)
∞∑

j,l=0

cos[Φ(l − j)]√
2(l+j)j!l!

× B∗
j BlHj(x)Hl(x). (48)

In Figure 4 we plot the phase-parameterized field strength
distribution (quadrature component) P (x, Φ) with β = 3,
r = 1 and (A) η = 0, (B) η = 0.2. In general the figures for
P (x, Φ) are symmetric around Φ = 0. Changing η does not
make a remarkable difference for the distributions except
of the higher magnitude of values. For x = 0 it is observed
that two peak shape for the distributions about Φ = ±π/2,
but all phase information disappears as x takes values
larger than 3.5. However, when x > 2.5, we show that
the two-peak shape for the distribution submerge and a
single broad peak is shown as Φ gets closer to 0.
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Fig. 4. Plots of the phase-parameterized field strength distri-
bution (quadrature component) P (x,Φ) with, β = 3, r = 1,
φ = 0, and (A) η = 0, (B) η = 0.2.

5 Generation scheme

After the discussion of the properties of the NLSCS’s, we
wish to consider the production of such states.An ion con-
fined in an electromagnetic trap can be regarded as a par-
ticle with a quantized centre-of-mass motion in harmonic
potential. The changes in motion of an ion can be con-
trolled by exciting or deexcitting the internal states of
the ion by a classical laser field. The ion’s motion is al-
tered since stimulated emission and absorption are always
accompanied by momentum exchange between the laser
field and the ion. If the vibrational amplitude of the ion is
much smaller than the laser wave-length (the Lamb-Dicke
limit [20]) and if the driving field is tuned to one of the vi-
brational sidebands the model simplifies to a form similar
to the Jaynes-Cummings model [27] where the radiation
field is replaced by the vibrational motion of the ion. The
dissipative effects of the cavity may be neglected in this
model as the coupling between the vibrational modes and
the environment is extremely weak [20–23].

We have the state (25) (Ci|ξi, βi〉f = βi|ξi, βi〉f ) where
Ci are given by (12). We look for a generation scheme for
such states. In experiments with trapped atoms, the elec-
tronic transitions are accompanied by annihilations and
creations of centre-of-mass motional quanta. We use the
trapped atom technique as a framework for the generation
of such states. It has been proposed [21,22] to use a num-
ber of laser fields of the same frequency but with different
amplitudes and different Lamb-Dicke parameters, in order

to engineer the photon-number depending coupling. Thus
to implement this scheme we apply N1 laser fields with the
same frequency tuned lower than the electronic transition
frequency by a single frequency of centre-of-atom quan-
tized motion, and N2 laser fields with the same frequency
tuned to the blue-sideband of the transition frequency by
the same frequency, besides N3 laser fields of the carrier
type. The Hamiltonian for the trapped atom of transition
frequency ω0, and the centre-of-mass quantized motion
of frequency ω and annihilation and creation operators a
and a+ respectively, in interaction with the different laser
fields is given by

H = ωa+a +
ω0

2
σz

+ �µ·
{

N1∑
r=1

�Er exp[ikrx − (ω0 − ω)t + iφr]

+
N2∑
l=1

�El exp[iklx − (ω0 + ω)t + iφl]

+
N3∑
u=1

�Eu exp[ikux − ω0t + iφu]

}
. (49)

The quantized centre-of-mass position x̂ is given by x̂ =
∆x(a + a+) where ∆x is the standard deviation of x̂
in the ground state of the harmonic potential. In equa-
tion (49) σz is the atomic inversion operator, �̂µ the atomic
dipole moment operator and can be written in the form
�̂µ = µ0s(σ+ + σ−) where σ+(σ−) is the raising (lowering)
operator for the atomic states. With �Ei the laser ampli-
tudes, and φi their phases. Rotating wave approximation
is then used and neglecting terms with fast oscillations
then we get the Hamiltonian (49) in the following simpli-
fied form:

Hint = σ+

{
ΩL1f1(N)a−ΩL2a

+f2(N)+ΩL3f3(N)
}

+h.c.

(50a)
where

f1(N) = i

N1∑
r=1

∞∑
m=1

Ωrηre
iφr

ΩL1

(−η2
r)m

m!(m + 1)!
N !

(N − m)!
e−η2

r

(50b)

f2(N) = i

N2∑
l=1

∞∑
m=1

Ωlηle
iφl

ΩL2

(−η2
l )m

m!(m + 1)!
N !

(N − m)!
e−η2

l

(50c)

f3(N) =
N3∑

u=1

∞∑
m=1

Ωueiφu

ΩL3

(−η2
u)m

(m!)2
N !

(N − m)!
e−η2

u (50d)

where Ωs is the electronic Rabi frequencies associated with
the field amplitude Es and ΩLi characteristic Rabi fre-
quencies. As it has been shown [21] the amplitudes (the
geometry) and phases of the laser fields can be controlled
to produce a photon-number dependent function tailored
at well.
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The master equation for the density matrix under
spontaneous emission with energy dissipation rate γ is
given by

∂ρ

∂t
= −i[Hint, ρ] +

γ

2
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−). (51)

The stationary solution ρ̄s for this master equation is ob-
tained by setting ∂ρ/∂t. A solution for the density opera-
tor ρ̄s, may be given as

ρ̄s = |g〉|ξ〉〈ξ|〈g| (52)

with |g〉 the electronic ground state of the atom (σ−|g〉 =
0, 〈g|σ+ = 0) and the state |ξ〉 is given from

Hint|g〉|ξ〉 = 0. (53)

This turns out to be

ΩL1f1(N)a − ΩL2a
+f2(N) + ΩL0f3(N)|ξ〉 = 0. (54)

This can be cast in the form of the NLSCS by taking

f(N) = f−1
3 (N − 1)f1(N − 1),

f−1(N) = f−1
3 (N − 1)f2(N),

ξ =
ΩL2

ΩL1

and β
√

1 − |ξ|2 = − Ω0

ΩL1

. (55)

Then the form of equation (54) tend to equation (25), thus
leading to the realization of NLSCS’s.

6 Conclusions

In this article we have studied a nonlinear extension of
the single-mode squeezed vacuum and squeezed coherent
states. Some basic definitions and properties of SU(1,1)
Lie algebra have been considered. Various applications of
these results in the context of the two-photon realization
of SU(1,1) in quantum optics are also considered. The
NLSS’s realization of SU(1,1) Lie group have been con-
structed. We have defined the nonlinear squeezed coher-
ent states. We have discussed numerically the properties
of these states. In particular, the photon number distribu-
tion and squeezing. Several moments have been calculated.
The second-order correlation function g(2) has been inves-
tigated numerically and shown that the NLSCS’s exhibit
sub-Poissonian behaviour. We have analyzed the quadra-
ture component distributions for these states and have
presented analytical and numerical results. A generation
scheme for NLSCS has been presented. Recently, some
different classes of nonlinear squeezed coherent states are
discussed in reference [28].
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